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Abstract. A new dissipative method to design observers for a large
class of nonlinear systems has been introduced recently by the author. It
generalizes and includes several well-known observer design methods in
the literature. In this paper a procedure to design Proportional-Integral
(PI) Observers based on the dissipativity theory is presented. Properties
of these observers are discussed.

1 Introduction

Recently [1,2] the author has proposed a Dissipative Design of Observers for
nonlinear systems that can be transformed into the form

E:{:i:=Az+G¢(a’)+go(t,y,u),y=Cz,a=Hz z(0)=$0 (1)

where z € R" is the state z, u € R™ is a known input, y € RP is the measured
output, and o € R” is a (not necessarily measured) linear function of the state.
@ (t,y,u) is an arbitrary nonlinear function of the time, the input and the out-
put. ¥ (o) is a g-dimensional vector that depends on the variable ¢. ¥ and ¢
are assumed to be locally Lipschitz in o or y, continuous in u, and piecewise
continuous in ¢, so that existence and uniqueness of solutions is guaranteed. It
will be assumed that the trajectories of interest of X' are defined for all the time,
i.e. there are no finite escape times.

The design can in the most important cases be reduced to Linear Matrix
Inequalities (LMI), that are numerically very well behaved, and have become
standard in the field. This method generalizes and encompases several other
design methods, as the High-Gain methodology [3,4], and the observers for Lip-
schitz nonlinear systems [5], well-known in the literature.

The objective of this paper is to present two further results for dissipative
observers. First a general method to robustify such observers is presented in the
context of so called proportional (P) observers. This can be useful to improve
the robustness to certain perturbations. As an example, it will be shown that
the classical first order sliding mode observers [6,7] and the robust observers
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[8] can be included in the dissipative methodology. The same basic idea for
designing proportional observers can be extended to designing Proportional-
Integral (PI) Observers. PI-Observers are very well known in the literature, in
particular for linear systems [9-13], because of their robustness properties against
constant perturbations. This is basically a consequence of the internal model
principle, since the integral action represents an internal model of unknown
constant perturbations, a fact that is widely used in robust regulation. Although
most of the literature on PI-Observers is related to linear systems, there are
some proposals to extend the idea to nonlinear systems. They use some specific
nonlinear observer design methods, in particular, the design for Lipschitz systems
[14, 15), and propose linear PI gains.

Our design idea consists basically of two steps. In the first one a nonlinear
observer is designed by the dissipative method for the unperturbed system, so
that many standard observer designs are included here. In a second step a ro-
bustifying nonlinear P or PI additional term is added to the basic nonlinear
observer, providing improved performance properties. These terms are so con-
structed, that they inject more dissipation to the dissipative observer. For this
kind of observers the separation property derived in [16] for the basic dissipative
observers can be extended to systems with constant perturbations.

2 Preliminaries

2.1 Dissipative systems

In this work the stability properties of dissipative systems will be used for the
design of observers for systems that can be represented as the feedback intercon-
nection of a dynamical linear time invariant (LTI) system in the forward loop and
a memoryless nonlinearity in the feedback loop. From the general dissipativity
theory [17] (see also [1,2]) the following results are of relevance here.

Consider the LTI continuous time system £ = Az + Bu, y = Cz, where
z € R*, u € RY, and y € R™ are the state, the input and the output vectors,

respectively. Let us consider quadratic w(y,u) =yTQy+2yTSu+
uT Ru, where Q € R™*™, § € R™*9, R € R9Y, and Q, R symmetric. System
XL is said to be ( ) with respect to the supply rate

w (y,w), or for short (Q,S, R)-SSD, if there exist a matrix P = PT > 0, and
€ > 0 such that

PA+ATP+¢P,PB] [CTQCCTS
[ BTP 0]‘[sTc R]SO' @)

For quadratic systems, i.e. m = ¢, passivity corresponds to the supply rate
w (y,u) = yTu. Note that this definition assures the existence of a quadratic
positive definite V (z) = 27 Pz, such that along any trajectory
of the system V (z(t)) < w (y (t),u (t)) — €V (z (t)).

‘ A t‘ime-varying memoryless nonlinearity % : [0,00) x R? — R™, y = 4 (¢, u)
piecewise continuous in ¢ and locally Lipschitz in u, such that ¥ (¢,0) =0, is sai(i
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to be dissipative with respect to the supply rate w (y, u), or for short (Q, S, R)-D.
if it satisfies w (¥ (t,u),u) > 0, for every t > 0, and u € RY. The classical sector
conditions [18] for square nonlinearities, i.e. m = g, can be represented in this
form. If 9 is in the sector [K), K2, i.e. (y— Kiu)T (Kau—y) > 0, then it is
(Qx sb R)'D, with (Qu Sv R) b (_Iy % (Kl + Kz) ] -% (K;rK2 + K;rKI))

A generalization of the circle criterion of absolute stability for non square
systems can be easily obtained, and it will be used in the sequel.

Lemma 1. [1, 2] Consider thefeedback interconnection
#=Az+Bu,y=Cz,u=-¥(ty), z(0)== (3)

If the system (C, A, B) is (~Rn, S, —Qn)-SSD, then z =0 for (3) is globally
ezponentially stable for every (Qn, SN, Rn)-D nonlinearity.

2.2 A strong Lyapunov function

To analyze the convergence properties of PI-Observers it will be required to
study conditions for the asymptotic stability of the interconnection of a nonlinear
globally asymptotically stable system in the forward loop with an integrator in
the feedback. This general class of systems is very important in adaptive control
and identification [19] and it is usually studied, from a passive perspective, as
the negative feedback interconnection of two passive subsystems. In this case
the sum of the storage functions constitutes a weak Lyapunov function. that is.
one whose time derivative is only negative semidefinite. even in the cases when
asymptotic stability can be assured. We will be interested here in a special class
with a time-invariant interconnection. The novelty of our result here is that we
will provide explicit conditions for the global exponential stability of the whole
system and we will give a strong Lyapunov function that ensures this.
Consider the following system 23 .

Z:{z=f(z,t)+ Bk(2) , z=CJ: ,..:"g:ék".zek’ (4)

where f(z,t) is locally Lipschitz in z and measurable in ¢, k : R — RP is
locally Lipschitz continuous and it is the gradient of a scalar, positive definite,
decrescent, radially unbounded, continuously differentiable function W (z), i.e.
kT (2) = 8;:W (z), k(0) = 0, and B, C are constant matrices of appropriate
dimensions. Assume that f(0,t) = 0, and that the system £ = f(z,t) has
zero as a globally uniformly asymptotically stable equilibrium point, and that
there is a quadratic Lyapunov function V (z) = zT Pz, with P symmetric and
positive definite, such that V (z) = 8;V (z) f(z,t) < —€V (z), with ¢ > 0.
From a passivity approach it follows that, if B = —P~'CT then the function
V* (z,z) = V (z) + W (2) satisfies

V* (2,2) < —€V (2) =27 CTk(2) + 8, W (z) Cz = =V (z) .

From this property it follows the uniform stability of the equilibrium point, the
boundedness of the trajectories and the asymptotic convergence to zero of z. To
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assure the uniform asymptotic stability of the origin further conditions. e.g. the
Theorem of Matrosov, have to be used. V* is therefore a weak Lyapunov function
for the system. Here we propose a strong Lyapunov function, that assures the
GUAS of the origin, under some additional assumptions.

Proposition 1. Consider the system (4) satisfying _the giuern conditions. Sup-
pose further that f (z,t) is globally Lipschitz in = uniformly in t, that the Jaco-
bian matriz of k (z) is continuous,.and it is uniformly upper and lower bounded,
and that C has full row rank. Under these conditions

Uz, z)=6V* (z,2) + zTCTk(2) ,
with § > 0 a sufficiently large constant, is a strong Lyapunov function for the
system, and the equilibrium point is globally exponentially stable.

Proof. We show first that for & sufficiently high U is positive definite and decres-
cent, i.e. there exist Ko functions a, a2 such that ay (Jl(z, 2)ll) < U(z,z) <

a3 (||(z, 2)||)- Note that

1
U (z,2) = 627 Pz+z" CTk (2)+6W (2) = 6zT Pz+zTCTH (tz) z+ §¢SZTH (tz) z.

since from the mean value theorem it follows that W (z) = 32T H (tz) z, k(z) =

_ *W(a) . he Hessi .
H (z) z, for some t, 7 € (0,1), and where H(z)= —a—;f—z is the Hessian matrix
of W (z). Since, by assumption, ¢ < H (z) € col for all z € RP and some
positive constants c1, ¢z, it follows easily that U is positive definite and decrescent
for some value of § sufficiently large. Next we show that the derivative of U is
negative definite. Recall that by the Lipschitz hypothesis || f (z, t)|| < A |lz]|, for
allt >0 and z € R™. .

09 < - =210 7] £asfite. 0

~

6= 6P —CTH(z)C 1XCTH (12) ]
S| L\H(rz)C H(rz)CP'CTH(1z)] °

where

It follows that U is negative definite for some & sufficiently large. Moreover, since
a3, az and a3 are all quadratic functions, global exponential stability follows.

3 Dissipative Observer Design

The Dissipative Design of Observers is a method recently proposed in [1,2]. Its
basic idea is to decompose the observer error dynamics into dissipative subsys-
tems, and using the dissipative theory, design the output injection in such a way,
that the error dynamics converges. For the particular class of systems described
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by the form (1) the results are particularly suitable for calculations. A full order
observer for X' of the form

n;{5=Ai+L(z}-y)+G¢(&+N(ﬁ—y))+¢(t,y,u), £0)=20 (5
y=Cz,6=Hzi

is proposed, where matrices L € R®*P, and N € R"*P have to be designed.
Defining the state estimation error by e £ £ — z, the output estimation error by
9 2 § — v, and the functional estimation error by & £ & — o, the dynamics of e
can be written as

:{é=ALe+Gv, z=Hye, v=—-¢(z,0) , (6)

)

where A, 2 A+ LC, Hv 2 H+ NC, z 2 Hye, and a new nonlinearity
é(z,0) 2 ¥ (0) — ¥ (o + 2). Note that ¢(0,0) = 0 for all &. Note that, in
general, the error dynamics (6) is not autonomous, since it is driven by the
system (1) through the linear function of the state ¢ = Hz. ¢ is therefore a time
varying nonlinearity, whose time variation depends on the state trajectory of the
plant.

The observer design consists in finding matrices L and N, if they exist, so that
Z satisfies the conditions of Lemma 1. For this it is necessary to assume that the
nonlinearity ¢ satisfy one or several supply rates w: ¢ is (Qy, S, R;)-dissipative
for some finite set of non positive semidefinite quadratic forms w; (¢, z) = ¢7 Qi ¢+
2¢7Siz+2TRiz> 0, forall o, fori = 1,2,--- , M.

Note that if ¢ satisfies the assumption, then it is E,’:l 0 (Qs, Si, R;)-dissipative
for every 6; > 0, i.e. ¢ is dissipative with respect to the supply rate w (¢, z) =
Eﬁl 0;w; (¢, z). In this case the design is as follows:

Theorem 1. é
L N 8= (61, ,0m) 6 >0
E (-Rs S7,-Qs) (Qo, S0, Ro) = TiX, 04 (Qi, Siy )
P=PT>0 KWw €>0

PAL+ATP+¢P+HERoHy , PG - HEST] _ @
GTP - SeHn Qs =12 )
n x K,y >

0 lle @I < lle (0) exp(—vt) e(0) t2>0

V (e) = eTPe = V< -V (e)

The observer design relies on finding (if they exist) matrices L and
N, a vector 8 = (81,--+,0), 6; > 0, a matrix P = PT > 0, and € > 0 such that
the inequality (7) is satisfied. In general this is a nonlinear matrix inequality
feasibility problem. However, if N is fixed, then it is a Linear Matrix Inequality
(LMI) feesibility problem, for which a solution can be effectively found by several
algorithms in the literature [20].
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The proposed method generalizes, unifies and improves several meth-
ods previously proposed in the literature. Some of them are [1]: (i) The Circle
criterion design: It is easy to see that this method generalizes and improves the
one proposed originally in [21], and further developed in (22] (and references
therein): our design is valid for non-square systerns, the nonlinearities are of
general type, and can be described by several sector conditions. (ii) Lipschitz
observer design: proposed recently by [5]. (iii) High-Gain observer design: The
well-known high-gain observer (HG) design [3] is a special case of the one pro-

posed here.

4 A Robustified Dissipative Observer Design

If the conditions of Theorem 1 are satisfied then (5) is a convergent observer for
the plant. However it is useful to be able to add more dissipation to the observer
error dynamics. In this section, based on the original design, a redesigned, more
dissipative observer will be proposed.

Consider the error dynamics of the observer (6). The design pursued was
obtained assigning the right dissipativity to the LTI map v — 2z to compen-
sate the nonlinearity ¢. Similar to the idea of adding damping control, well-
known in the literature [23), an additional dissipation term will be added to
the error dynamics. For this consider an additional "input” v to the error sys-
tem é = Are — G¢ (Hne,a) + v, § = Ce. Since V (e) = e Pe is a Lyapunov
function for the system we have for =, that V < —eV (e) + eT Pv. Select-
ing v = —P~1CTQTx (QJ,t), where Q is an arbitrary matrix, and x satisfies
X (£,8) 2 0,Y€, ¥t >0, then

V < —eV (e) — eTPPICTQ X (Q7,t) = —€V (€) — 7 QT X (QF,t) < —€V (e) .

This shows that an extra dissipative term has been added to the error equation.
This enhances the convergence properties of the observation error, what can be
used for robustification of the observer. Note that with this selection the map
r — w of the error equation

j=Ce,z=Hye, w=Qfy, r=—-x(w,t) ,

Ey:

- {é = Are— Gp(z,0) + P71CTQ"r, (8)

becomes strictly passive. To realize this extra term in the error equation, the
observer has to be redesigned as

Qg: {5=Afv+L(ﬁ-y)+G¢(&+N(ﬁ—y))+<p(t,y,u)—P“C”QTx(Qﬁ,t) ,
§=C%,6=Hi
9)

This proves the following



Dissipative design of Pi-Observers 91

Lemma 2.
x (1) 5 €Tx(&t) 20, VE,VE>20 R ()
)

()

There are many possible selections for the function x. For example, selecting
Q =1I and x (9) = sign (§) one recovers the sliding mode observer [6,7] and the
robust observers [8], with global convergence properties.

The previous lemma shows that the state estimation error of the (robustified)
dissipative observer (9) converges exponentially, with a convergence rate that
is independent of the trajectories of the plant. The following Lemma states a
robustness property of the observation error against external perturbations and
the convergence of the nonlinear signals.

Lemma 3. é(z,0) X (w,t) z w
#(z(t),o(t) x (w(t),t)

L, #(z,0)  x(w,t)
8, (t) 82 (t)
o)  62(t)
()

5 A Dissipative Proportional-Integral Observer Design

The observer designed in Theorem 1 is , since only a static nonlinear
function of the estimation error is injected. It is well known that the injection of
an integral term of the estimation error greatly improves the robustness prop-
erties of the observer. In what follows, a (nonlinear) proportional-integral term
will be included in the dissipative observer, and the properties of such observer
will be studied using the dissipativity theory.

A ( ) for system (1) is a dynamical system
2p1 that has as inputs the input u and the output y of X, and its output Z is
an estimation of the state z of X. A full order PI observer for X of the form

e {éj=Ai+Lg+G¢(a+Ny)+w(t,y,u)+E[x,(e)+xp(Kg)1 ,
§=Kj,§=Ct,o=Hi, §=9-v, £0)=& w0
10

is proposed, where matrices L € R**P, N € R™*?, K € R??, and E € R**Y,
and the functions s : R? = RY, and »p : R9 = R? have to be designed. The
dynamics of the error system Spy can be written as the feedback interconnection
of two systems:

EPI:{

¢ = Are — Gp (Hye,0) + Ev, y= KCe,

1:{
2 {6=7, v @+ @), o)

n
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The objective of the design is to render the (closed) set {(e, &) € R"*? | e = 0}
asymptotically stable for system Zpy. Since V1 (e) = e Pe is a Lyapunov func-
tion for the system we have for =) that Vi < —eV) (e) — eT PE (—v). If K and
E are selected such that e PE = —3T = —eTCT KT, then it follows that =) is
strictly state passive from (—v) — 7.

It will be shown in the sequel that if s¢; (-) and s¢p (-) are selected appropri-
ately, then the subsystem =3 is also passive from 4 — v. Consider a C! function
Vi (€) > 0 for all £ € RY, and V2 (0) = 0. Select s¢; (€) = (9¢Va (€))T. Then it is
clear that V5 (£) = fé s¢1 (2) - dz. Moreover, if 3¢p () is such that 3% ()5 > 0
for all 4, then along the trajectories of =5 it is satisfied

Va () =5F (§)€ =137 £)7=—3FEHF)7+0T7<0T7.

It follows then that the time derivative of the storage function V (e, §) = Vi (e)+
Va2 (€) along the solutions of Epy is V (e,€) < —eV) () —yTv—3E () 7 +vT5 <
—eVi (€) — »#F (7) 7. This ensures that e () — 0 as ¢t — co. Moreover, if V2 (€) is
radially unbounded, then the state (e, §) will be bounded.

If convergence of the equilibrium point (e, £) = 0 is desired, further conditions
are required. A set of such conditions are given in the next theorem, together
with a strong Lyapunov function to ensure this.

Theorem 2.

¥ (o) »p () K € R9*? Kc
c? R? r V2 (€)
V2(0)=0 E=—P7ICTKT 5 () = (248 *E@7 20
Qpr ()

U (e, &) = 6eTPe + eTCT KT 3¢ (€) + 6Va (€)
é

Let us rewrite the system as é = f (e,0) — P"'CTK T3¢ (€), £ = KCe
where f (e,0) £ ALe—G¢ (Hnye,0)—P~1CT KT 5p (K Ce). From the Hypothesis
it follows that f(e,0) is globally Lipschitz uniformly in o. Consider V (e) =
eT Pe. Its time derivative along the solutions of system é = fle,0)is V(e) =
eTPf(e,0) < —eV (e). The result then follows directly from Prop. 1.

A particular, but important, case is the one when 3¢/ (£) and »p ()
are linear functions, i.e. 37 () = K;6 , K1 = K¥ > 0,xp(7) = Kp¥, Kp > 0.

In this case V5 (£) = %gTK 1§. However, it is also possible to use nonlinear and
discontinuous functions sp (¥), as in the previous section.

6 Robustness properties of the PI-Observer
Consider the plant (1) with a constant input perturbation

2:{t=Az+Gy(0)+¢(t,y,u)+Dw, y=Cz, 0 = Hx (12)
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where w € RY is a constant (or slowly time-varying) perturbation. If a PI-
Observer (10) is designed, then the error dynamics becomes

- . Ey:{é=ALe—G¢(Hne,0) + Ev—Dw, y=KCe,
SRS {E=F, v= O+ (D)

or also, taking E = —P~'CTKT = D, é = f(e,0) + D(5¢(€) —w), £ =
KCe , where f(e,0) £ Ape — Go(Hne,0) — P~'CTKT xp (KCe). Defining
§= x}'l (w), that exists for every w, since s is globally invertible, and intro-
ducing eg = £ — &, the error dynamics becomes

Zpr:{é=f(e,0)+ D (5r (§+ec) — 5 (£)) , é¢=KCe+(,
where ¢ = dé/dt = (g (€)™ w is related to the time derivative of w. Then

from Lemma 3 and Theorem 2 it follows easily the following convergence result
for the PI-Observer.

Theorem 3.
() D=
—P-1CTKT E=D
2p1( ) z Zoz
§—¢ w ( )
w (e, €¢)
w

When the (unknown) perturbation is constant, its value can be deter-
mined from the state of the integral term, since w = s (E) If w changes slowly,
this estimation is correct up to a small error. When the matching condition
D = —P~1CTKT is satisfied, the effect of the perturbation can be compensated
exactly by the integral term of the PI-observer.

7 Conclusions

A new dissipative method to design observers for a large class of nonlinear sys-
tems has been introduced recently by the author. It generalizes and includes
several well-known observer design methods in the literature. In this paper a
procedure to increase the robustness of these dissipative observers is presented.
The increased performance can be obtained by means of (nonlinear) proportional
or proportional-integral terms. These PI-Observers have the usual properties of
systems with integral terms, that are robust against constant perturbations, and
they can be used, in principle, for robust regulation purposes.
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